
How To Write a Setuid Program

Matt Bishop

May, 1985

.

Research Institute for Advanced Computer Science
NASA Ames Research Center

RlACS TR 85.6

(NASA-CR-187300) HOY TO WRITE A S E T U I D
PROGRAM (Research Ins t - for Advanced
Computer Science) 2 7 p

N90-71369

Unclas
00/61 0295388

Research Institute for Advanced Computer Science

How To Write a Setuid Program

Matt Biahop

Research Institute for Advanced Computer Science
NASA Amen Research Center

Moffett Field, CA 94035

ABSTRACT

Setuid programs can pose a grave threat to UNM system8
because they explicitly violate the protection scheme designed into
UNM. However, setuid programs are often the only practical solu-
tion to probleme of maintaining a fully functioning UNM system.
Because of this paradox, they are among the moat difhicnt p m
grams to write. Thie paper lists and disc- mme simple rules for
writing setuid program^ that will decresae an attacker’s ability to
use such a program to compromise a UNM system.

May 23,1985

H o w To Write a Setuid Program

Matt Bishop

Research Institute for Advanced Computer Science
NASA Ames R-h Center

Moffett Field, CA 94035

Introductim

A typical problem in ayetems programming is often posed as a problem of

keeping records [ALEP'Il]. Suppose someone has written a program and w i d m

to keep a record of its use. This ilk, which we shall call the Airtory fire, must be

writable by the program (so it can be kept up to date), but not by anyone else

(BO that the entries & it are accurate.) U m t sohres thb problem by providing

two sets of identifications for processes. The h t set, called the r d user

identification and group identification (or UID and GID, respectively), indicate

the real user of the process. The second set, called the e#ectiwe UID and GID,

indicate what righta the procen~ has, which may be, and often are, differmt from

the d UID and GID. The protection mruL of the file which, when executed,

produces the proceea contains a bit which is called the sctuid bit. (There iil

' another such bit for the elktive GID.) If that bit is not set, the -ire UXD of

the procum will be that of the ptlson executing the file; but if the h a i d bit ia ret

(so the program rune in scttdd modc), the &the UlD will be that of the owner

- 2 -

of the file, not that of the person executing the file. In either case, the real UID

and GID are those of the person executing the file. So if only the owner of the

history file (who is the user with the same UID as the file) can write on it, the

setuid bit of the file containing the program is turned on, and the UIDs of this

file and the history file are the same, then when someone runs the program, that

process can write into the history die.

These programs are called sctuid ptogtum, and exist to allow ordinary usem

to perform functions which they could not perform otherwise. Without them,

many UNM systems would be quite unusable. An exampleof a setuid program

performing an essential function is a program which liits the active processes on

a system with protected memory. Since memory ia protected, normally only the

privileged user toot could scan memory to list these processes. However, this

would prevent other users from keeping track of their jobs. As with the history

file, the solution is to use a setuid program, with roof privileges, to read memory

and list the active processes.

Setuid programs introduce many security problems [TRUSSO]. This paper

describes how to write such programs to minimize these problems. The reader

should bear in mind that on some systems, the mere existence of a setuid pro-

gram introduces security holes; however, it is possible to e l i i a t e the obviow

ones.

In this paper, all references to the UNIX Progrummet’r Mund are to either

the 4.2 Berkeley manual [UPM83] or to the System V manual [UPMSI]. AI

usual, manual PUGE are indicated by following the italichad nurze with the 6cc-

- 3 -

tion number in psrenth-.

I. Be am Redrictive am Pocrsible in Choohg the UID

The basic rule of computer aecurity is to m i n i damage resulting from a

break-in. For thh reaaon, when creating a setuid program, it should be given the

least dangerow UID possible. If, for example, game programs were setuid to

root, and there were a way to get a shell with roof privilega from within a game,

the game player could compromise the entire computer sgstem. It would be far

safer to have a user called gamcb and run the game programs setuid to that mer.

Then, if there were a way to get a shell from within a game, at worst it would be

setuid to gumu and only game programa could be compromised.

II. Do Not Write Setuid Shell Scripta -

The Berkeley 4.2 Distribution of UNM allows shell scripts to be run with

setuid permisaione. To understand how this works, a brief explanation is in

order.

Thia version of UNM checks the first l i e of a shell script to see if it be-

with the two characters '#!'. When such a shell script is executed, the re& of

that line, up to the h t 32 characters, is taken as the a b h t e path name of8

commlnd interpreter, which is then aecutedt. If the shell bcript m oetuid, the

setuid bib are applied to the commlnd interpreter before execution.

Udortunately, once one finds a setuid shell script, it is very uuy either to .

obtain an interdue eetrrid shell, or to force the shell to execute any .psti&d

t s a ~ S) f i t ? d c L . i L .

- 4 -

sequence of commands. This leaves the owner of the shell script open to a devas-

tating attack. Under no circumstances should a setuid shell script ever exist on

any system where security is a concern.

One way to avoid having a setuid shell script is to turn off the setuid bit on

the shell script, and rather than calling the script directly, use the following pro-

gram to call it:

/* * This is a simple program to run
* a script as though it were setuid
* to the owner of this program. The
* executable of this must be setuid
* to the owner of the shell script.
*/

main(argc. argv)
int argc:
char **argv:
{

I* * Replace the zeroth argument
* with the path name of the
* shdl script.
*/

argv[O] = SCRIPT - FULL - PATH - NAME:

I*

*I
* Overlay the script.

(void) execv(argv(O]. argv):

/*
If it gets here, the script

* did not run ...
*/

exit(1) :
penor(SCRIPT - FULL - PATH - NAME):

In this program, SCRIPT - FULL - PATH - NAME is the full path name of the shell

script; a~ the comments indicate, the executabk generated by compiling thir pro-

- 5 -

gram must be d e setuid to the owner of the shell script. However, the shell

script ahodd ad be setuid.

III. Do Not Use c r d (2) far Locking

According to its manual page, “The mode given [ereat] ie arbitrary; it need

not allow writing. This feature hss been used ... by programs to construct a s b

ple exclusive locking mechanism.” In other words, one way to make a lock file is

to c r d a file with an unwritable mode (mode OOO is the moat popular for this).

Then, if another user tried to ere& the same 61e, ereat would fail, refurning -1.

For example:

I* * This k supposed to provide a reliable locking
* d o n i s m for programs.
*I

{

1

lock(lock - - file name)
& ~ * l o c k - - fib name: / * lockf ik* /

mtum(uut(lock fik name. 0)): - -

The only problem is that such a scheme does not work when at least one of

the processes has toot’s UID, baause protection modes are ignored when the

efGxtive UDD m that of root. Hence, root can overwrite the exiating 6le rtgudlcss

of ita protection d.

To do locking in a setuid program, it is bed to nse link(2). I f a link to an

already-exhting fiie is attempted, linkfaib, even if the procam &hag the b k h g

- 6 -

* Thee routines provide a reliable locking
* mechanism for processes regardless of what
* user id they have or who owns them.
*/

#include <errno.h>
extern int errno: /* error code */

/* * The locking routine: note you give it the lock
* file name and an existing file name so this
* routine can be used with processes creating
* multiple locks on different file systems.
* It returns 1 if the lock was successful.
* 0 if the lock failed because some other process
* locked this one out, and -1 if the attempt
* failed for any other reason.
*/

lock(exlsting_filename. lock - - file name)
char *existing - - file name:
char *lock file name:
{

/* name of existing file */
/* name of lock file */ - -

I* * Be sure existing - - file name exists
* If it does. creat fails. so we ignore
* the failure.
*/

I*
*/

I*

*I

(void) creat(exist1ng - W-name. 0):

* Try to make the link

if (link(exist1ng - - file name, lock - - file name) == 0)
retum(1):

* Oops - it failed. Return the
* appropriate code.

retum(emto == EEXIST ? 0 : -1):
1
/*

The unlocking routine: it's what you would
* expect. It returns 1 if the unbck succeeded.
* 0 If it failed because the lock fik dld not
* exist. and -1 if it failed for m y other

reason.
*I

unlock(lock - Mc-name)

- 7 -

char *W_file_name: /* name of the lock fiie */
{

I* * Try to break the link
*I

/*

*/

if (unlink(lock file - name) == 0)
retum(l)7

* Oops - it failed. Return the
* appropriate code.

retum(m0 == ENOENT ? 0 : -1):
1

Note that the link call requires that its first argument exint, that both

existing file name and lo& - - file! name be in the same fle syskm, and - -
existing-file-name not be a directory. The above locking routme return~ 1 if the

l d i attempt s u e d , 0 if it faib becawe another proewe ham locked it out,

and -1 if it faih for any other rtlLbop. A retuxn-value of -1 meam there m b0111t

problem, such as being unable to create existing - - file name. Similarly, tbe

unlocking routine returns 1 if the unlocking succeed~, 0 if it faih because no lock-

ing was done, and -1 if it fails for any other reason.

With 4.2 Berkeley UNM, an alternative is to use! the pOc42) man ull, but

this has d i s d v m t a g ~ (specifically, it createe advisory loch only, and it is not

portabk to 0 t h V-M of m).

can be smt illicitly by controlliry raumrca. Horrcnr, thir problem k much

brprder thaa the ocope of thin paper, 10- ahdl pur over it.

- 8 -

IV. Catch All Signals

When a procem created by running a setuid file dumps core, the core file has

the same UID as the real UID of the process?. By setting urnask$ properly, it is

possible to obtain a world-writable file owned by someone else. On some UNM

systems, a shell can be made to execute commands entered in that file with the

rights of the owner of the file.

To prevent this, setuid programs should catch all signals possible§. If inif-

eig, defined below, is called on initialization, any signal will cause an immediate

exit without a core dump:

/* * This catches all signals and exits
* without dumping core.
*/

#include <signal. h >

/* * This just exits. Since the signal number
* is just the first argument to this routine,
* you can get fancy if you want.
*I

{

1

catcher ()

exit(1):

/*
-

t On rome v a r i o u of UNIX, such u 43BSD, no core %le b produced if the owner of the

$ See 4 1) for a d d p t b m Ot the d command.
3 Note th8t rome rigndm, rmch u SIC- (k System V a d 4.2BSD) ud 8fC8mP (b

4.2mD), cannot be camsht. Momwe, om
an inhgclrt race condition in rignal hadera, When a s i l d b camght, tk r i g d trap b reset
to it8 defadt vdue and &en the hudhr m d. A8 a mu&, tk 8une 8ig.d im-
mediately &a previou o m wiU uue t k rigmd to take ehct rag- ot whether it i be=
ing trapped. 0. much 8 veniom of=, r i g d cu.ot be safely cam~kt. However, if 8 rig&
b behg wruf, m d i . g the p10au a *mal will rot c a m the defadt utkm to be IwktaLed,
BO, rignab cu be safely ig~ottd.

proceu is root. However, core filer arc prodaced for program mehid to other -.

d OTUNLX, 6 u Vmbm 1, them

- 9 -

* This initializes the signal catching
vectors to call the above routine. Note
any signal (including the process control

* ones like “child just urited”) will cause
* it to be called (You may want to change
* that: see the text.) If you want to allow
* those signals which don’t cause core dumps
* to be ignored. put the code in here.
*/

{
inits@()

register int i: /* counter */

/*

*/

* On any signal. call catcher
* unless the signal is being ignored

for(i = 1: i c NSIG: i++)
if (signal(i. SIG IGN) != SIG - IGN)

(void) signz(i. catcher):
1

With theee two routin-, catching any of SIGQUIT, SIGILL, SIGTRAP,

SIGIOT, SIGFPE; SIGBUS, SIGSEGV, or SIGSYS wil l not catme a core

dump.

Note that all of SIGCHLD, SIGCONT, SIGTSTP, SIGTTIN, and

SIGTTOU also cause an exit. Unless there is a specific reason not to do this,

this is a good idea, because if data is kept in a world-writable file, or data or lock

filar a world-writable dinctarp such aa “/trnp”, one can e!a~ily change infor-

mation the proemm (presumably) relieu-upon. Note, however, that if the r y ,

tcm(3) call is wed, the SIGCHLI) signal will be sent to the protar when the

command given rudcm is finirhr?d; in this case, it would be wioe to ignore

SIGCHLI).

This brings 01 to our next point.

- 10 -

V. Check Data for Consistency

When writing a setuid program, it is often tempting to assume data upon

which decisions are based is reliable. For example, consider a spooler. &e

setuid process spools jobs, and another (called the doemon) runs them. The be-

mon should not assume that the spooled jobs were spooled by the setuid PRO-

gram; it should try to verify this by other means, for example, checking that the

owner of the command file is the same as the owner of the spooler, and that the

file has not been changed since being spooled.

The precise information to be stored depends a lot on what is being done.

For example, with a printing spooler, at a minimum the device number and

inode number associated with each data file should be stored, Bince t h two

numbers uniquely identify any file on the system; in addition, dtoring the time of

last modification is useful, as that will enable the daemon to determine if the

data has changed since the job was spooled. All this information should be

obtained twice - once by the spooling program, which stores it in the control

file, and once again by the daemon process, which then compares it to the data

stored in the control file. If ony of the stored quantities are different, the

integrity of the data file is suspect, and appropriate action should be taken.

With a printing spooler, for example, the job should not print the file.

VI. Make No Assumptions About Recovery Of

If the setuid program encounters an unexpected situation that the program

is not prepared to handle (mxh M running out of filc dwcriptoru), the program

should not attempt to correct for the ritortion. It rhwld stop. Thin h the

-11-

opposite of the standard pro- maxim about robuetness of p-, but

t h a e L a very g d muon for thh rule. When a program triea to handle an

unknown or unexpected situation, very often the programmer has made certain

assumptions which do not hold up; for example, he may assume that lack of @le

descriptors means there is a problem with the system that requirea the user to be

given root privileges to &c. Such ursumptiona can pose extreme danger to the

system and its users.

When writing a setuid program, keep track of things that can go wrong - a

command too long, an input line too long, data in the wrong format, a failed

system call, and BO forth - and at each step d, “if thia occurred, what should

be done?” If in any case the answer iB ‘ ‘amme ...”, at that point the aetuid pro-

gram should atop. Do not attempt to recover unlm recovery is gaarantad; it iB

too easy to produce undesirable s ide4kts while trying to recover.

Once again, when writing a setaid program, if you are not S O ~ C how to hur-

of dle a condition, exit. That way, the uner cannot do any damage an a

encountering (or creating) the condition.

For an acellenf -ion of error detection and recovery un& UNM, see

“Can’t Happen or /* NOTREACHED */ or aeal Prograrmr Dump Core” in the

1985 Winter USENIX ProcccdinQl ([DARWSS]).

VII. cloa All But Necessary File -Befbrc

- 12 -

problem of failing to do this becomes especially acute when the program being

czee’ed may be a user program rather than a system one. If, for example, the

setuid program were reading a sensitive file, and that file had descriptor number

9, then the user program could also read the sensitive file (because, as the

manual page warm, “[d]eacriptors open in the calling procese remain open in the

new process ...”)

The easiest way to prevent this is to set a flag indicating that a sensitive file

is to be closed whenever an ezec occurs. The flag should be set immediately after

opening the file. Let the sensitive file’s descriptor be SENSITIVE - DESC. In both

System V and 4.2 BSD, the system call

fcntl(SENSIT1VE - DESC, F - SETFD, 1)

will c a m the tile to close a c m ~ ezecs; in both Version 7 and 4.2 BSD, the call

ioctl(SENSITIVE - DESC. FIOCLEX. NULL)

will have the same effect. (See fentl(2) and ioctl(2) for more information.)

VIII. Reset Effective UIDB Before Calling ctcc

Resetting the effective UID and GID before calling ezec seems obvious, but

it i~ often overlooked. When it is, the user may find himself running a program

with unexpected privileges. The following version of s@em doee this:

/* * Thk is like system(3). but resets the
* effective UID and GID:

it returns -1 if the setuid/setgid fails.
* otherwise returns what system(3) does
*/

su system(s)
c h z *s; /* command */
1

I*

- 13 -

* Reset the effective UID and GID
* to the real UID and GID
*/

if (setuid(getuid()) == -1 11 setgid(getgid0) == -1)
return(-1);

/*
Now call system(3)

*/
mtum(system(s)) :

1

IX. Check the Environment at the Process

The environment includes those variables which are inherited fiom the

parent process. Among these are the variabks PATH (which controh the order

and names of directories searched by the shell for progrwm to be executed), IFS

(a list of chsrackrs which are treated M word separatom), and the puent’a

umru), which controls the protection mode of files that the subprocem creates.

Also relevant is any attempt to restrict the proteus' access to the Ne q w t u n with

the +em call chroof(2).

The chroot system call, which may be d only by roof, will force the pro-

cess to treat the argument directory M the root of the & system. For exampk,

the CaIl

will prevent the procars from ever acceaaing “/usr”. However, even though qm-

bok links are hurdled properly, be a w e that hud linka to directoncs mt8ide

the tree rooted at the a.rgument directory can be t o m for m k , if

- 14 -

chdir(”/demos”) :
chdir(”. .”)

would make the current working directory be “/usr” Using relative path names

at this point (since an initial “/” is interpreted as “/usr/riacs”), the user could

access any file on the system. Therefore, when using this call, one must be cer-

tain that no directories are linked to any of the descendants of the new root.

One of the more insidious threats comes from routines which rely on the

shell to execute a program. (The routines to be wary of here are popcn(3), rye

tern, czccZp(3), and ezccvp$.) The danger is that the shell will not execute the

program intended. As an example, suppose a program that is setuid to root WRU

popen to execute the program printfile. AB popcn une!e the rhell to execute the

command, all a user needs to do is to alter hia PATH environment variable so

that a private directory is checked before the system directories. Then, he writes

hie own program called printfile and puts it in that private directory. This

private copy can do anything he lies. When the popcn routine is executed, his

private copy of printfile will be run, with root privileges!

On h t blush, limiting the path to a known, safe path would seem to fix the

problem. Alas, it d a s not. When the Bourne ehell rh is used, there b an

environment variable IFS which c o n t a b a list of characters that are to be

treated M word separators. For example, if IF’S ia set to “e”, then the rhell

command rpdZ(1) will be treated as a command rp with one argument 11 (since

the “e” is treated an a blank.) Hence, one could force the aetuid procam to ae-

cute a program other than the one intended.

- 15-

With a setuid program, all sabprogra.ma should be invoked by their fnll

path name, or some path known to be safe should be prefixed to the commrad;

and the IFS variable should be explicitly set to the empty string (which d e s

white space the only command separators.) The following version of @em

forcea the path VANILLA to be used as the execution path for the command

/* * This forces system(3) to use the path
* defined in the macro VANILLA. A retum of
* -1 means there was not enough space for
* the command and the vanilla path.
*/

#define VANILLA /usr/ucb:/bin:/usr/ binw

safe system(s)
char-s: /* command */

char *cmdbuf /* safe path + command */
{

/* * Allocate space for the command
*/

cmdbuf = malloc((unsigned) (strlen(s)+strien(VANILLA)+35)):
if (cmdbuf == NULL)

return(-1):
/*

*/
* Prepend the path to the command

(void) sprintf(cmdbuf. YFS= : PATH=%s : export PATH IFS : %sua
VANILLA, 6):

I*
* (SeeaGie)
*/

* G H su rystem(3) so UID/GID get reset

return(su - system(andbuf)):
1

- 16-

that file must not be writable by anyone else, a subtle but nonetheless dangerous

situation arises. The usual implementation is for the process to create the file,

chown(2) it to the real UID and real GID of the process, and then write to it.

However, if the urnask is set to 0, and the process is interrupted after the file is

created but before it is chowraed the process will leave a world-writable file owned

by the user who has the effective UID of the setuid process.

There are two ways to prevent this; the first is fairly simple, but requires

the effective UID to be that of root. (The other method does not suffer from this

restriction; it is described in the next section.) The umaek(2) system call can be

used to reset the urnusk within the setuid process M) that the file is at no time

world-writable; this setting overrides any other, previous ~etting8. Hence!, the

following routine should be used, rather than the usual opcn(2):

/* * This opens the file: it takes the same parameters as the
* 4.2BSD and System V opem(2) call: to modify for Version 7.
* change the parameters to open(2) and this routine as appropriate.
*/

int safe open(fi1ename. flags, mode)
char *fiLname:
int flags, mode:

/* file name */
/* how to open, creation d e */

/* old urnask */
/* return value of open */

unsigned oumask:
register int opnval:

{

I* * Reset the umask to b k k nokowmr from
* writing to the file.

oumask = umask(022):
*I

I*
Opem the file. Note the group and world write bits
in the protection mask will be dcrd regardless

* of the setting of "modem. dw to the umuk all.
*I

opnval = opm(fi&name. fbgr. mode):

- 17-

I*
Restore the initial value of the umask.

*/
(void) umask(oumask):
retum(opnva1) :

1
Upon return, the process can safely ehown the file to the real UID and GID of

the process. (Incidentally, only root can e h o m a file, which is why this method

will not work for programs the effective UID of which is not root.) Note that if

the p- in interrupted between the open and the chown the resulting file will

have the same UID and GID M the process’ effective UID and GID, but the per-

son who ran the process will not be able to write to that file (unless, of course,

his UID and GID are the same M the process’ &atbe UID and GID.)

As a related problem, u m & is o b set to a dangerous value by the pumt

process; for example, if a daemon ie started at boot time (from the file “/etc/rc”

or “/etc/rc.local~y), its default umuuk will be 0. Hence, any it creatu~ will be

created world-writable unless the protection mask used in the system call creat-

ing the fie is set otherwise. The above routine will set the \Imrut to 022 before

any fik is created, so it may be safely wed in such situations.

Library rout& &odd be ueed with great care. In particalu, the routine

not return the logii name apsctcd. Rather, une getuid(2) and gdpwuid((3), rn

I*
*Routimtomtumt)laiogirr~
*oftheuserofthbplocru. If
* none. return the UIDu a string.
* Euerything b ntumed &I a statk
* mea.

- 18 -

*/
#include <pwd.h>

static char retval[BUFSIZ]; /* return buffer for UID */

char *glogin ()

register int *pwd; /* passwd structure */ {

I*
* J
* get the structure associated with the real UID

if ((pwd = getpwuid(getuid0)) == NULL){
I* * Something's out of date.
* Return the numerical UID
* as a string.
*I

(void) sprintf(retva1. "%dn. gettiid()):
return(retval):

1
retu m (p w d-> pwname) ;

1

X. Be CareM With 1/0 Operations

When a setuid process must write to a file owned by the person who ia run-

ning the &uid program, and that file must not be writable by anyone else, a

subtle but nonethelem dangerous rituation a,ries. The usual implementation is

for the procem to create the file, chom it to the real UID and real GID of the

process, and then write to it. However, if the u m d is set to 0, and the proce~

is interrupted after the file is crested but before it is chowned, the p r o c a will

leave a world-writable file owned by the uaer who hae the effective UID of the

setuid proem.

The oecond method of preventing a rctuid prucew fiom creating a world-

writable a e owned by the dective UID of the proce6~ b far mon eompk, but

- 10-

e l imimb the need for any chown system calla.

In thb method, the procem for&(Z)s, and the child &r its effective UID

and GID to the real UID and GID. The parent then writes the data to the child

via pipc(2) rather than to the file; meanwhile, the child creates the file and copies

the data from the pipe to the file. That way, the file is never owned by the user

whose UID is the dketive UID of the setuid process.

The following routines provide a very primitive interface for this:

/* * Routines to open, write to. and close a file;
* this is done with a fork and pipes
* so no chown(2)'ing need be done

/* may need to indude <sys/types.h> */ */
#indude <sys/param.h>

extern int ermo:
static int chpid:
static int ackline(N0FILq:
union{

/* error code */
/* child's PID */
/* pipes for acknowledgements */
/* used to pass error of open around */
/* ... as a char array */
/* ... as an integer */

char al l] :
int i:

} u r n :

/* * This opens the fila: it takes the same parameters as the
4.2BSD and System V open(2) call: to modify for Version 7.

* change the parametem to opm(2) and this routine as appropriate.
* The child process is cmtained e n t i d y within this routine
*/

ht d e qm(fiknrms. fhgs. mode)
chu * f i Lme:
Int #gs. mode:
{

/* fik name */
/* how to opm. uwtiom mode */

/* pipe for aclm0Ww-t .*/
int -2); / *prpefor ln fomutknfbw*/
in t status[2):
int forkvrl: /* value retamed from fork(2) */

/*
Build the pipes.

* Informwon to be wdttal tot)# fib
fbws tiUuUgh-cLwc to tbediw.

- 20 -

* The status pipe carries acknowledgements
* from the child to the parent.
*/

if (pipe(desc) == -1)
return(-1):

if (pipe(status) == -1){
(void) close(desc[O]):
(void) close(desc[11) :
return(-1):

1

I*

*/
* Spawn the child process.

if ((forkval = fork()) == -l){
(void) close(desc[O]):
(void) close(desc[1)) :
(void) close(status[O]);

’ (void) close(status[l]):
return(-1);

1
else if (forkval == 0){

/* * This, is the child: it never haves this
* branch of the conditional.
* First. some useful variables.
* /

char buf[BUFSIZ]:
int fildes = -1:
int ctread:

/* 1/0 buffer */
/* descriptor of output file * /
/* count of bytes read */

/*

*/
* Reset effective UID. GID.

if (setuid(getuid0) < 0 11 setgid(getgid0) < 0)
- exit(1);

/*

*/

* Read only from the desc pipe,
* and write only to the status plpe.

(void) ciose(desc(1)):
(void) dose(strtus(0l) :

- 21 -

*/
if ((fildes = open(filename. flags. mode)) < 0)

* Shucks ... pass back the error number.

u en.i = enno:
(void) write(status[l). u - m.a. sizeof(int)):

I*
*/

- exit (0) :
1
/*

*/

/*

S ina l all's well.

u m.i = -1:
(void) write(status(1). u - en.a. sizeof(int)):

* Main loop - just read from the dex pipe
* until there's nothing more to read.
* Do acknowledge evwy read. though.
*/

u m.i = -1:
w%le((ctmad = read(desc[O]. buf. BUFSIZ)) > 0)(

if (write(fiMes. buf. ctrud) != ctread)(
u em.i = enno:
(void) write(status[l). u - em.a. sizeof(int)):
- exit (0) :

1
(void) write(status(1). u - =.a. sizeof(int)):

1
I*

*/
(void) dose(status(1)):

(void) dosc(fiides): - a (0) :

* We just read an end of fila.
* Close the pipe and the Ne and quit.

(void) h(dcsc[O]) :

1
/*

*/
(void) h(St.tud1)):
(void) d#d&401):
/* * NOW u w tbe st8tur -tor.
*/

a c ~ d w c [l)] = ~tUsj0) :

This is the parent process.
* Close the dcsaiQton we don't wed.

- 22 -

/*

*/
* Get the status of the open(2).

if (read(status[O), u - err.a. sizeof(int)) != sizeof(int)){

* No status was sent - assume catastrophe.
/*

*/
(void) close(status[O]):
(void) close(desc[11) :
return(-1):

1
I*

*/

* We read something and It wasn't good. so
* set errno to the error code and quit.

if (u err.i != -l){
(void) close(status[O]) :
(void) close(desc[11) :
errno = uerr.1:
return(-1):

/*

*/
* Return the pipe descriptor.

return(desc[11) :

/*.

*/

* This writes to the child/file and
* takes the same parameters as write(2).

int safe - write(fd. buf. bufsiz)
int fd;
char *buf:
int bufsir:

/* file descriptor from safe - open */
/* data to be written */
/* number of bytes to be written */

/* counter in a for loop */
/* bytes written to child * /

register int i:
register int tokid:

{

I*

*/

* Do this in packets of BUFSIZ
* so you don't flood the pipe.

for(i = 0: i < bufsiz: i += BUFSIZ){

* See how much to write.
/*

*/

! - 23 -

rnin = bufsiz - i:
if (min > BUFSIZ)

rnin = BUFSIZ:
/*

*/

/*

*/

* Write it.

if (write(fd. buf. min) != min)
return(i) :

Wait for an acknowledgement:
* if none. assume the worst.

if (read(ackline[fd]. u - err.a. sizeof(int)) != sizeof(1nt))
retum(-1):

if (u - m.i != -l){
errno = u en.i:
retum(-lT

I* * This doses the child/% and
* t a b the same parameters as dose(2).
* Note it waits for the child process.
*/

c
int safe - &se(fd)
int fd: /* file descriptor from safe - open */

register int woitval: /* proass that died */

/*

*/
* Close the send pipe and the acknowledgement pipe.

(void) dose(fd):
(vaid) ~ (. c k l l m [f d]) :
I*
*/

Wait for the child to bite the big one.

whYs((W&V8I = wdt(O)) != -1 && W W V ~ != drpid):
1

- 24 -

Conclusion

To summarize, the rules to remember when writing a setuid program are:

0 be as restrictive as possible in choosing the UID
0 do not write setuid shell scripts
0 do not use creat for locking
0 catch all signals
0 check data for consistency
0 make no assumptions about recovery of errors
0 close all but necessary file descriptors before calling czce

0 reset effective UIDs before calling czcc

0 check the environment of the process
0 be careful with 1/0 operations

Setuid programs explicitly violate the protection scheme designed into UNM.

On systems where security is not a problem, this is a blessing, since it eaablcs

many things to be done easily that otherwise would be very difficult; but on sys-

tems where security is a problem, these programs also pose very real threats.

Unfortunately, they are also very necessary, so the designers and implementors

of setuid programs should take great care when writing them.

A ~ h ~ r d e d p m m t r : Thanks to Bob Brown, Peter Denning, George Gobel, Chriie

Kent, Rich Kulawiec, Dawn Manewal, and Kirk Smith, who reviewed an earlier

draft of this paper, and made many constructive suggestions.

References

I [ALEP71] Aleph-Null, “Computer Rccrutiom,” Software - Pradirc and
Ezpcticnce l (2) pp. 201 - 204 (April - June 1971)

[DARW85] Darwin, Ian and Collyer, Geoff, “Can’t Happen or /*
NOTREACHED */ or Real Progranu Dump Core,” 1986 Winter
USENIX Proceedings (January 1985)

- 25 -

I

[LAMP731 Lampson, Butler, “A Note on the Confinement Problem,” CACM
16(10) pp. 613 - 615 (October 1973)

(TRUSS01 Truscott, Tom and Elli~, James, “On the Correctness of Setuser-ID
Programs,” Department of Computer Science, Duke Univereity
(unpublished)

[UPM83] UNIX Progrummer ’8 Manwl, 4.Z Berkeley Software Dirtn‘bution,
Vir fwl VAX-I1 Version, Computer Science Division, Department of
Electrical Engineering and Computer Science, University of Califor-
nia, Berkeley, CA (August 1983)

[UPMSI] UNIX Programmer’s M u n d , Version 1.0, Silicon Graphice, Inc.,
Mountain View, CA (June 1984)

